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Abstract. We discuss the giant magnetoresistance (GMR) in magnetic superlaltices with an 
sd scattering model on the assumption that d states we bound in magnetic layers. The GMR 
is calculated by using the quantum B o l t r m n  equation using fhnig-Penney-type potentials. 
Spin-dependent interfacial scattering depends on the number of scatterers, the height of the 
scattering potentials and the amplitude of the wave function of the d state mt interfaces, while 
spin-dependent bulk scattering is attributed to the spin-dependent density of states (DOS) of d 
states. Our model agrees well with the measured GMR in CdCu superlattices with d c i a l l y  
mixed interfaces. when we assume that the minority-spin d stales arc strongly bound in CO 
layers. Therefore. the spin-dependent scamring in Co/Cu superlattices is allributed to the spin- 
dependent DOS of the d states in the CO layers. 

1. Introduction 

The giant magnetoresistance (GMR) exhibited in many magnetic superlattices and granular 
alloys arises from the spin-dependent scattering of conduction electrons r1-51. It has been 
pointed out that the interfacial scattering of conduction electrons plays an important role in 
the spin-dependent scattering [l]. Camley and Barnag [6,7] have proposed a semi-classical 
model for the GMR by extending the FuchsSondheimer model [SI. In their model, the 
GMR is described with many phenomenological parameters for conduction electrons such 
as spin-dependent mean free paths in  layers, reflection, transmission and diffuse scattering 
coefficients at interfaces. Quanrum mechanical models by Hood and Falicov (91 and Visscher 
[lo] relate these parameters to superlattice potentials and the potentials of bulk and interfacial 
scatterers. Since these theories are based on a single-band free electron model, spin- 
dependent scattering is attributed to spin-dependent potentials. For FdCr superlattices, the 
spin-dependent potentials due to interfacial roughness have been indicated by microscopic 
theories [11, 121. In fact, it has been reported that the magnetoresistance (MR) ratio in 
FeKr is enhanced drastically by the interfacial roughness [13, 141. Thus, the origin of the 
GMR in FdCr is the spin-dependent scattering at interfaces. 

For M/Cu (M = CO, NiFe) systems, however, no one has reported the enhancement of 
the GMR owing to the interfacial roughness [15-191. In our previous paper [16], we have 
reported that the temperature dependence of the GMR is not influenced by the interfacial 
roughness, and the residual MR ratio decreases with increasing interfacial roughness. This 
suggests that the spin-dependent bulk scattering is important for the occurrence of the GMR. 
On the other hand, Parkin [ZO] has reported that the GMR is enhanced by very thin CO layers 
inserted at interfaces of NiFe/Cu multilayers. He claimed that the interfacial sfufe as well as 
roughness plays an important role in the GMR. These experimental results require a theory 
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to take account of both the spin-dependent bulk scattering and the interfacial electronic 
states. In discussing the CMR in WCu,  however, the above theories are not appropriate, 
since they do not include the information about the band structure being very different 
from that of FdCr. If we take account of the electronic band structure, the formalism 
for the bulk and interfacial scattering will be modified, For M/Cu systems, Edwards ez 
al [21] claimed in their resistor network theory that the spin-dependent s-d scattering in 
bulk is the dominant process giving rise to the GMR. Xing et d 1221 also insist on the 
importance of a spin-dependent density of states (DOS) of d bands in magnetic layers. In 
these models, the GMR is attributed to the scattering of s electrons to unfilled d bands which 
have spin-dependent DOS. These models semi-quantitatively agree with the layer thickness 
dependence of GMR in W C u  systems. However, the influence of the interfacial state has 
not been treated explicitly, since the Fermi surfaces of s and d bands are treated as simple 
spheres. Recently, Schep et al [23] calculated the GMR in a method based on the full 
electronic structure. They reported the importance of the s-d hybridization for the origin of 
the GMR in the current-perpendicular-to-the-plane (CPP) geometry. However, their theory 
does not satisfactorily explain the considerable MR observed in the current-in-the-plane 
(CIP) geometry. They suggest that some additional scattering mechanism is necessary for 
explaining the CIP MR. 

In this study, we have extended the resistor network theory to include the interfacial state 
explicitly, on the basis of the method developed by Visscher [IOl. The simple expression 
we have deduced neglecting the s-d hybridization agrees well with our experimental results 
for the GMR observed in CIP geometry for the CoICu superlattices with artificially mixed 
interfaces. 
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2. The model 

We confine our discussions to low temperatures, neglect magnon and phonon scattering and 
assume that the effective mean free path of the conduction electrons is much larger than 
the superlattice period. This assumption limits our discussion to scattering processes that 
do not cause spin mixing, so that the current is carried separately by up- and down-spin 
conduction electrons (two-current model) as [24] 

(1) 
PT f P 4  

where p~ and p~ are the resistivity of up- and down-spin channels, respectively, and p is 
the total resistivity. We assume that the current is carried only by s electrons and neglect the 
current carried by d electrons with heavy effective mass. The non-zero residual resistivity 
is due to the scattering of s electrons by impurities or defects at PSC with a potential of the 
form 

p=- P l P 4  

V ( r )  = v, 8(r - TSC). (2) 
In the transition metals, the s electrons can be scattered into holes in the s band (s-s 
scattering) or d band (s-d scattering) when they are scattered either at interfaces or inside 
layers. The scattering rate of s-s and s-d scattering will be determined by the scattering 
amplitude for the transition between an initial and a final state and the availability of states 
into which the electrons can be scattered. Since only electrons near the Fermi surface 
contribute to the resistivity, these scattering rates can be written in terms of Fermi's golden 
rule as 
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where 'vp and C J ~  are an initial s and a final s or d state for the U spin, respectively, and 
N(&) is the DOS of the final state at the Fermi energy EF.  The total scattering rate is the 
summation of the s-s and scattering rates. Therefore, the properties of s and d bands 
near the Fermi surface play an important role in the GMR. We treat the s and d bands 
with the effective-mass approximation. Since the CIP MR due to A hybridization is small 
[23]. we neglect it and assume that the bulk of each metal constituting the superlattice has 
two free electron bands with different effective masses. One corresponds to an s band, 
and another corresponds to a d band. The effective masses and potentials for the bands 
may depend on spin directions for the ferromagnetic metals. When two metals are layered 
alternately, the superlattice states will be formed owing to the potential modulation. For 
systems such as M/Cu, s electrons see small potential differences at interfaces between 
magnetic and nonmagnetic layers, since the bottoms of the s bands of these metals are well 
aligned on the scale of the Fermi energy [25 ,26] .  Owing to the superlattice state due to the 
superlattice potential, the anisotropy in the Fermi wave number will arise. Although this 
anisotropy affects the CPP MR, its influence on the CIP MR can be negIigible [27]. This 
means that the s states can be treated as simple plane waves when the potential differences 
are small. For simplicity, we assume that s electrons do not see any potential differences 
when crossing the interfaces between magnetic and non-magnetic layers, since we are now 
interested in the CIP MR. On the other hand, d states see a large potential difference at 
interfaces, since there is an exchange interaction in ferromagnetic layers. Assuming the 
superlattice to be infinite in the z direction, the superlattice potentials are modelled by 
Kronig-Penney-type potentials. We assume that the potentials for the d states are constant 
within each layer but depend on spin and material. For systems such as WCu, the d band of 
Cu and the majority-spin d band of the ferromagnetic layers lie well below the Fermi energy, 
so they do not contribute to the resistivity [25 ,26] .  Therefore, we take account of only the 
minority-spin d band of ferromagnetic layers. The potential for the d band is composed 
of a periodic m a y  of barriers of thickness a with height U!, and wells of thickness b with 
depth U,  as shown in figure 1. For a ferromagnetic (F) configuration of the magnetization 
of ferromagnetic layers, the potential for down-spin electrons has a = t N M  and b = t M ,  
where INM is the thickness of nonmagnetic layers and t M  of magnetic layers; for up-spin 
electrons, b = 0, i.e., there are no wells. For antiferromagnetic (AF) configurations, the 
potentials for up- and down-spin electrons are the same and are shifted in space relative to 
one another; a = 2 t ~ ~  + t M  and b = tM. The potential for the s band is at U, and is constant 
in a superlattice as mentioned above. For these step-function potentials, we calculate the 
scattering matrix elements from the exact quantum-mechanical wave functions. 

3. The superlattice state for a d band 

Since the potential for s electrons is constant in the superlattice, s electrons travel in the 
superlattice as ordinary plane waves. Thus. the Fermi surface of the s band is spherical. 
However, the Fermi surface of the d band is no longer spherical due to the superlattice 
potential. In order to calculate the resistivity, we must know the shape of the Fermi surface 
of the d band. The wave functions of the d state W(T) have the Bloch form 

where @(z) satisfies the Bloch condition for some k,  
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AF state 

Figure 1. A schematic diagram of lhe superlattice pntentials for lenomagnetic (F slalc) and 
anziferromagnclic (AF slale) configumlions and for electmm with up ( t )  and doaa (4) spin. 
The lines indicate the polentials lord smes (-1, the potenlids lor s slats (- . -1 and the 
Fermi energy (- - -). 

where D = a  + b. The Brillouin zone is infinite in the x and y directions, and 2n/D wide 
in z (k2) direction. Here, we normalize the wave function Q as 

(6) Q-' / Iq( r ) lZd3r  = 1 

where Q is the volume of a normalization box. The solution of @(z) is a linear combination 
of exp(+ikLz), where kL on the Fermi surface is defined in the well as 

and in the barrier as 

where k, = (k,' + k,')'/' and md is the effective mass of the d states. From (5) and the 
boundary conditions where II, and dII,/dz are continuous, we obtain 

sin(Ka) +cos(Ka)  =cos(k,D) 1 eQb Q2-K' 
y[ 2QK 

In this study, we consider a case in which the barrier height is large enough to satisfy 
eQh >> 1. In this case, the minority-spin d states are confined to the CO layers and have 
eigenstates quantized to the thickness of CO layers. Therefore, the Fermi surface becomes 
a set of cylinders (subbands) parallel to the z (or k,) direction. 

4. Calculation of the resistivity 

Resistivities are calculated by the relaxation time approximation of the Boltzmann equation. 
Since we neglect the shift of the Fermi surface for the d states, the relaxation time r,(k) 
(U = T, 4) is given as [22,24] 
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1 - = 1 P(k’do, ksu) d’k’ rid(k) 
where P(k’i, k j )  is the scattering rate between states (k‘i)  and (kj), i and j stand for s f ,  
s$, d t  and d$. The first term in (10) comes from s-s scattering, and the second from s-d 
scattering. For simplicity, we assume here that the bulk scatterers with the potential strength 
VO = VB distribute in the superlattices with uniform volume density of qB. In addition, we 
assume that the interfacial scatterers with the potential strength VO = VI distribute within 
the region of z = zi f E with the uniform volume density of qt, where zi is the position 
of the ith interface. Here, we do not assume any spin dependence in VB and VI, as in [21] 
and [22]. 

4.1. s-s scattering 

Since the wave function of the s state is a plane wave, it is easy to calculate the rate of s-s 
scattering. Using Fermi’s golden rule, the scattering rate is given as [lo] 

where ny is the number of interfaces i n  a period of superlattice potential and dN(Ep) 
denotes the number of states per unit volume and unit energy at EF in the volume element 
d’k‘ near k’. Integrating (13), we obtain the relaxation time due to s-s scattering as 

where m, and k; are the effective mass and the Fermi wave number of s electrons. The 
first term in the parentheses of (14) comes from the bulk scattering, while the second term 
i s  due to the interfacial scattering. 

4.2. s-d scattering 

The scattering rate of s 4  scattering is written as 

when E < 1. The summation in (16) is taken over the interfaces in a period of the 
superlattice potential. In the case where Qb >> 1, d states are confined in the well layers, 
so the amplitude of @k,(z) has a non-zero value in the well layers and near the interfaces 
between the well,and the barrier layers. Thus, it is enough to take the summation in (16) 
over the well-barrier interfaces. From the analogy with the simple quantum well problem, 
I$k,(z i )Iz  has the same value at the interfaces as at both edges of the well layers. Hence, 
(16) is written with the number of the well-barrier interfaces in a period nid as 

where ZL is the position of one of the interfaces causing non-zero SA scattering. As 
mentioned in the previous section, allowed-wave-number vectors k’ are discrete. In each 
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subband, the value of k: and the wave function are constant, since Qb >> I .  Thus, we 
obtain 

M Suzuki and Y Taga 

for each subband, where dki is a length increment along the Fermi surface i n  the z direction. 
Integrating (17) using (I@, the relaxation time due to s-d scattering is given with the k: in 
the j t h  subband k:' as 

~ oarentheses ( where n A  is the number of d subbands. The first term in (19) comes 
from the bulk scattering, while the second term is due to the interfacial scattering. Since the 
relaxation time due to both s-s and s-d scattering (equations (14) and (19)) is independent 
of IC, the resistivity is written with the density of s electrons N. as 

Equation (15) indicates that g,(&) is the DOS of the s states per spin at the Fermi 
energy for the bulk. On the other hand, g d ( E ~ )  depends on nd due to the quantum size 
effect. When the barrier height Ub is large enough, nd is approximated by the maximum 
integer satisfying n d  < (a/rr) [2md(EF - ~ / ~ ) / h * ] " ~ ,  If we neglect the discreteness in 
nd,  gd(EF) is identical with the DOS of the d states at the Fermi energy for the bulk 
ferromagnetic metals. In this case, (22) has the same form as the resistor network theory 
except for the terms due to the interfacial scattering. The interfacial scattering depends on 
the number of the scattering centres ( 2 ~ 1 1 ) ~  the strength of the scattering potential (V,) and 
the amplitude of the wave function of the d state at interfaces (I$h(zr)l'). The first one 
corresponds to the magnitude of the interfacial roughness, and the last one corresponds to 
interfacial electronic state. Therefore, our model includes not only the interfacial roughness 
but also the interfacial electronic states. 

5. GMR 

In this section, we calculate the GMR using (22) .  The parameters dependent on the spin 
and magnetic configuration are D. n;", nid and q5. Defining the superlattice period as 
h = rM + ~NM,  the value of D for the F state is h and that for the AF state is 21. According 
to this, the value of n;l for the F state is 2, and that for the A F  state is 4. The values of nfd 
for the down-spin electrons for the F state and for the up- and down-spin electrons for the 
A F  state are 2 ,  while nfd = 0 for up-spin electrons for the F state. Since the normalization 
condition depends on the superlattice period (see (6)), q5 for the AF state is two times larger 
than that for the F state, Thus, q5 = 2q5~ for the AF state. where q 5 ~  is the q5 for the F 
state. The number of the subbands Ed is constant, unless the thickness of the magnetic 
layers changes. With these parameters, we obtain the expressions for the spin-dependent 

~- ~. .- ~. 
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resistivities for the F state p,‘ as 

8503 
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Figure 2. The calculated MR ratio with respect to 2e 
and @F. The parameters are assumed to be rM = I nm, 
~ N M  = 2 nm, gd(EF)/ga(EF) = 12 and V;q,lV&e = 
5. The r e ~ o n s  of @F c 1 and @F > I are indicated by 
the different tones. 

Figure 3. The measured (symbols) and calculated 
(lines) mistivities ( U )  and MR ratios (b). Measurement 
was performed at 5 K on [Co(l.O nm)/Cu(2.2 n m ) h  
with Ottificialiy mixed interfacial regions of thickness 
I,,,. In (U ) ,  the memured p~ (0)  and PF (W 
correspond to the resistivities for antiferromagnetic and 
ferromagnetic configurations, respectively. Data are 
token from [16]. Parameters used in the calculation 
are rM = 1 nm, INM = 2.2 nm ~ J ( E F ) / ~ ~ ( E F )  = 12 
and Vtzqr/Vslqe = 5. The lines indicate the results for 

and & = 1.5 (. . . . . .). 
@ = 0 (- - -), #F = 0.5 (-), @F = 1.0 (-. -) 

Although the GMR can be calculated numerically assuming the appropriate superlattice 
potentials, here we discuss the GMR phenomenologically, treating gd(EF) and @F as 
independent parameters for better transparency of the physics. Figure 2 shows the calculated 
MR ratio with respect to 2E and $F. We assume here that tM = 1 nm, tNM = 2 nm, 
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gd(EF)/gs(EF) = 12 and V:qi/Viq, = 5. These values are suitable for explaining 
the experimental results for CoICu superlattices, as we mention in the next section. A 
considerable M R  ratio is obtained even without the interfacial scattering ( 2 ~  = 0 nm) 
because of the strong spin dependence in the DOS of the d states. The M R  ratio decreases 
with increasing 2 for $F < I ,  while it  increases with increasing 2~ for $p > 1. This 
tendency remains unchanged if we use different values for the layer thicknesses, i.e. the 
ratios of the DOS and the interfacial to bulk scattering remains unchanged. Thus, the 
relationship between the MR ratio and the interfacial roughness strongly depends on &, In 
other words, the GMR in superlattices with interfacial roughness strongly depends on the 
amplitude of the wave function of the d state at interfaces. In the next section, we estimate 
the magnitude of $F for Co/Cu superlattices by comparing our calculation with experiments. 

6. Interfacial scattering in CoKu 

We have reported the structure and the GMR properties of CoKu superlattices with 
artificially mixed interfaces [IS, 16.281. The interfaces in Co/Cu have been modified by 
codeposition. The CO and Cu atoms are mixing randomly in the interfacial regions, which 
increases with increasing nominal thickness of the codeposited region tmir. 

The resistivity of these samples decreases from the initial value at zero field with 
increasing magnetic field, and saturates at the value of PF i n  a field larger than the saturation 
field. After saturation. the resistivity has a peak near the coercive field. Since the value of the 
initial resistivity is larger than that of the peak one, the AF alignment of the magnetization of 
the CO layers is more perfect in the initial state than that in the field where the resistivity has 
the peak. The magnetization of all samples is zero in the initial state, and the relationship 
between the resistivity and the square of the magnetization is linear at low temperatures. 
From the discussion in  [16], this indicates that the magnetic configuration of our samples is 
very close to the perfect AF alignment in the initial state. Therefore we denote the resistivity 
in the initial states as here. Furthermore, the linear dependence of the resistivity on the 
square of the magnetization precludes the strong spin dependence of the scattering potential 
for both bulk and interfacial scattering. 

Figure 3 shows the dependence of the GMR measured at 5 K for 
[Co(l.O nm)/Cu(2.2 nm)]~j .  Data are taken from 1161. Both PAF and ,OF increase with 
increasing t,,,jx, while the MR ratio decreases. It is clear that the interfacial scattering is 
crucial but less spin dependent. 

Despite the large differences in the resistivities at low temperature, no significant 
differenc'es in the temperature dependence of the GMR between the samples with different 
r,i, have been observed. For all samples, p~ closely approximates a T2 power law, while 
PAF - ,OF changes linearly with T3/* .  The difference between the temperature coefficients 
of the samples with tmi, < 0.15 nm is small. This indicates that the interfacial scattering 
can be attributed to the impurity or defect scattering. 

Although the mean free path roughly estimated for the maximum resistivity in figure 3 
(% 20 WQ cm) is about 4.0 nm, Edwards etal [21] indicated that the limit of long mean free 
path is already reached rapidly for a mean free path comparable with the superlattice period. 
Therefore, it is appropriate to adopt the present model for interpreting the f,,,jx dependence 
of the GMR at 5 K. We can estimate the value of gd(EF)/g,(EF) at about 12 from the 
measured MR ratio of the sample of f,ix = 0 nm, if we neglect the interfacial scattering 
(assuming E = 0 nm in equations (23>-(25)). This value of gd(Ep)/gr(&) is close to the 
ratio of the calculated DOS at EF in the majority- and minority-spin bands in bulk CO 
[25,26]. The calculated resistivities and the MR ratio for the parameters of t~ = 1 nm. 

M Suzuki and Y Taga 
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~ N M  = 2.2 nm, gd(EF)/gs(EF) = 12 and \f?ql/viqB = 5 are also indicated by lines in 
figure 3, where we assume that tmlX = 2 ~ .  The calculated results are normalized at t,,,ix = 0 
so as to make the calculated p~ equal to the measured one. It is clear that the behaviour of 
p~ is insensitive to #F. The agreement between measured and calculated p~ is good when 
V f q ~ f V , ” q ~  = 5.0* 1.0. It is reasonable that the density of the scattering centres is larger, 
or the scattering potential is stronger at interfaces than in the bulk (ql > ~IB or VI > VB). 
On the other hand, ~ A F  is sensitive to #F. Comparing the measured and the calculated 
results, #F Y 0.5 is suitable for explaining the behaviour of ~ A F  and the MR ratio for the 
samples for which tmix < 0.15 nm. The approximation 6 << 1 in (16) will no longer hold 
when tmix becomes comparable with the period of I$k(z)lz. This affects p~ much more 
than it  does p ~ ,  and may cause the deviation between the measured and calculated pAF at 
f,, = 0.25 nm. Detailed numerical calculation will be necessary to study the GMR for the 
samples with such large roughness. The value of #F c 1 indicates that amplitude of the d 
states is attenuated at interfaces, since the average value of l$k(z)1’ is about A / &  (> 1) in 
the magnetic layers. Thus, d states are strongly bound in magnetic layers. 

Our model agrees well with the experimental results. However, the contibution of the 
interfacial scattering to the resistivity of the sample with r,i, = 0 nm remains unclear, 
although we neglect it in the above discussion. In fact, we have confirmed the existence of 
a small amount of interfacial mixing for the sample with t,,, = 0 nm [ZS]. The influence 
of the interfacial mixing can also be discussed by the layer thickness dependence of the 
resistivities. Thus, we focus our attention on the dependence of p~ (which is not influenced 
by the interlayer coupling between adjacent CO layers) on the thickness of the CO and Cu 
layers for samples without intentionally mixed interfaces. As a result, p~ increases with 
increasing CO layer thickness. while it  decreases with increasing Cu layer thickness. This 
indicates clearly that the resistivity of CO layers is larger than that of not only Cu layers 
but also the interfaces. This layer thickness dependence is reproduced only when E is very 
small in equations (23) and (24). Therefore, our assumption of E = 0 for the sample with 
t,,,ix = 0 nm is appropriate. 

If superlattices have slightly rougher interfaces than those of our samples with t,,,ix = 
0 nm, the interfacial scattering will inHuence the GMR significantly depending on the 
interfacial electronic state. The interfacial electronic state should be sensitive to the 
combination of metals. Parkin 1201 has reported that the MR ratio is enhanced by inserting 
very thin CO layers at the interfaces between Cu and NiFe layers. This can be interpreted in 
our model as the change in #F depending on materials. The virtual bound state indicated by 
Inoue and Maekawa [29] may also affect the magnitude of the GMR. However, the bulk s-d 
scattering will be the most important process giving rise to the GMR in MlCu superlattices, 
since a very large MR ratio is observed, at least for our sample whose interfacial scattering 
is very small. 

Consequently, the GMR in Co/Cu superlattices mainly comes from the spin-dependent 
bulk scattering due to spin-dependent DOS i n  the CO layers. The interfacial scattering due 
to interfacial roughness is less spin dependent than the bulk scattering. This is understood 
in terms of the d states bound in the CO layers. 

7. Conclusions 

We have extended the resistor network theory to include interfacial scattering explicitly and 
discussed the role of bound d state in  the CIP MR. “he interfacial states are described in our 
model with the number of interfacial scattering centres (aq,), the height of the scattering 
potentials (V,) and the amplitude of the wave function of the d states (~$&,~)~’). The 
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first is concerned with the interfacial roughness, and the last corresponds to the interfacial 
electronic state. Our model is consistent with the experiments for Co/Cu superlattices with 
artificially mixed interfaces, when we assume that the minority spin d states are strongly 
bound in CO layers. Therefore, the GMR in Co/Cu superlattices mainly comes from the 
spin-dependent s-d scattering in the CO layers, and the interfacial scattering is less spin- 
dependent than bulk scattering. This is because of the attenuation of the wave function of 
d states at interfaces. 

M Suzuki aid Y Taga 
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